Adaptation, Diversité, Ecologie des Levures (ADEL)
L’équipe ADEL étudie l’écologie et l’évolution des levures ainsi que les bases génétiques des caractères impliquées dans la fermentation et l’adaptation des levures aux milieux de la boulangerie et de l’œnologie.
Responsables Scientifiques : Virginie Galeote & Delphine Sicard
Sur le plan fondamental, nos travaux s’articulent autour de 4 thèmes majeurs :
Base génétique des propriétés des souches et impact de la composition du milieu sur la dynamique fermentaire.
Nous recherchons des QTLs, X-QTLs, eQTLs, fQTLs qui expliquent les variations de phénotypes comme les capacités fermentaires, la durée de phase de latence, les limitations nutritionnelles notamment lipidiques, les besoins en azote, les traits d’histoire de vie (viabilité des levures, taux de croissance, …), la production d’arômes et de sulfites, la valeur sélective. Nous développons également des approches d’évolution expérimentale qui nous permettent d’identifier des gènes candidats impliqués dans ces phénotypes. Des approches d’édition des génomes sont utilisées par la suite pour valider les gènes candidats. Enfin, nous étudions les interactions génotype x environnement, par exemple l’impact des phytostérols ou de la composition en dipeptides sur l’expression des gènes d’intérêt. Ces études portent principalement sur l’espèce Saccharomyces cerevisiae. Projets : CASDAR NITROGENES, ANR ENZINVIVO, ITN AROMAGENESIS, ITN YEASTDOC, AIC IPSO Doctorant(e)s et post-doctorant(e)s : Carmen Becerra, Irene de Guidi, Marta Avramova
Histoire évolutive des levures domestiquées
Nous cherchons à retracer l’histoire évolutive des levures d’œnologie et de boulangerie à travers des approches de génomique des populations. Un intérêt particulier est aussi porté à la caractérisation des mécanismes d’adaptation (transferts horizontaux de gènes, recherche de loci sous sélection, etc…) par des approches de génomique comparative, génétique et génomique fonctionnelle. Ces études concernent à la fois l’espèce modèle Saccharomyces cerevisiae et d’autres espèces de levure présentes dans les moûts de raisin (Hanseniaspora uvarum et H. opuntia) ou dans les levains de panification (Kazachstania bulderi et K. humilis). Nous travaillons également sur les vins et pains anciens en collaboration avec des archéologues. Projets : ANR BAKERY, ANR VINICULTURE
Dynamique et évolution des communautés microbiennes
Nos projets visent à caractériser la diversité taxonomique et fonctionnelle des espèces microbiennes dans les moûts de raisin et les levains de panification, à rechercher les facteurs (terroir, cépage de vigne/variété de blé, pratiques) qui l’influencent et à analyser les flux microbiens du champ aux produits fermentés. Nos recherches s’intéressent également à la dynamique évolutive de la composition de ces communautés microbiennes et de la diversité génétique d’espèces en particulier. L’objectif est de mieux comprendre la dynamique (stabilité, résistance, résilience,…) des ferments face à des variations de pratiques et d’environnement. Projet : ANR BAKERY, ANR PEAKYEAST, FdF « Gluten : Mythe ou réalité II», MEM METABAR-FOOD Doctorant(e)s : Lauriane Mietton, Lucas Von Gastrow, Sonia Boudaoud
Propriétés émergentes des interactions microbiennes
A travers la construction de communautés microbiennes simplifiées modèles, nous cherchons à comprendre quelle est la nature des interactions levure/levure et levure/bactérie (compétition, mutualisme, commensalisme, amensalisme, …) et quelles sont les propriétés émergentes associées à l’assemblage des espèces et sa complexité. Cette thématique s’applique aux écosystèmes vin et pain. Projets : INRA ModOeno, MEM ENovFood
En termes d’objectifs finalisés, nos activités concernent les problématiques suivantes :
Meilleure maitrise des procédés fermentaires
Amélioration des souches de S. cerevisiae en œnologie
Construction de « starter » mixte en œnologie
Conservation des espèces microbiennes impliquées dans les produits fermentés et des savoir-faire associés
Approches utilisées :
Recherche de QTLs, xQTLs, eQTLs, fQTLs de caractères d’intérêts
Evolution expérimentale
Edition de génome
Génomique comparée, Génomique des populations et Méta-génomique
Génomique fonctionnelle
Modélisation métabolique et d’interaction écologique
- Boisramé A, Neuvéglise C (2022) Development of a vector set for high or inducible gene expression and protein secretion in the yeast genus Blastobotrys. Journal of Fungi, 8(5): 418 - Devillers H, Sarilar V, Grondin C, Sterck L, Segond D, Jacques N, et al. (2022) Whole-genome sequences of two Kazachstania barnettii strains isolated from anthropic environments. Genome Biology and Evolution, 14(2):evac007 - Eder M, Sanchez I, Camarasa C, Daran JM, Legras JL, Dequin S (2022) Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiology, 106: 104041 - Girardi-Piva G, Casalta E, Legras J-L, Nidelet T, Pradal M, Macna F, Ferreira D, Ortiz-Julien A, Tesnière C, Galeote V and Mouret J-R (2022) Influence of ergosterol and phytosterols on wine alcoholic fermentation with Saccharomyces cerevisiae strains. Front. Microbiol. 13:966245. doi: 10.3389/fmicb.2022.966245 - Girardi Piva G, Casalta E, Legras JL, Tesnière C, Sablayrolles JM, Ferreira D, et al. (2022) Characterization and role of sterols in Saccharomyces cerevisiae during white wine alcoholic fermentation. Fermentation, 8(2): 90 - Godillot J, Sanchez I, Perez M, Picou C, Galeote V, Sablayrolles JM, et al. (2022) The timing of nitrogen addition impacts yeast genes expression and the production of aroma compounds during wine fermentation. Frontiers in Microbiology, https://www.frontiersin.org/articles/10.3389/fmicb.2022.829786 - Mietton L, Samson MF, Marlin T, Godet T, Nolleau V, Guezenec S, et al. (2022) Impact of leavening agent and wheat variety on bread organoleptic and nutritional quality. Microorganisms, 10(7): 1416 - Rapaport A, David R, Dochain D, Harmand J, Nidelet T. (2022) Consideration of maintenance in wine fermentation modeling. Foods, 12: 1682 - Smukowski Heil C, Howell K, Sicard D. (2022) Yeasts and breadmaking, p 327-357, in “Yeasts: From Nature to Bioprocesses” . Bentham Science, 459 p. - Von Gastrow L, Michel E, Legrand J, Amelot R, Segond D, Guezenec S, et al. (2022) Microbial community dispersal from wheat grains to sourdoughs: A contribution of participatory research. Molecular Ecology, https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.16630 - Wittwer AE, Sicard D, Howell KS. (2022) Kazachstania humilis. Trends in Microbiology ; https://www.cell.com/trends/microbiology/abstract/S0966-842X(22)00119-6
2021
- Alfonzo A, Sicard D, Di Miceli G, Guezenec S, Settanni L (2021). Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiology, 94: 103666 - Becerra-Rodríguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S, et al. (2021). Yeast plasma membrane fungal oligopeptide transporters display distinct substrate preferences despite their high sequence identity. J Fungi, 7(11): 963 - Bigey F, Segond D, Friedrich A, Guezenec S, Bourgais A, Huyghe L, Agier N, Nidelet T, Sicard D (2021). Evidence for two main domestication trajectories in Saccharomyces cerevisiae linked to distinct bread-making processes. Current Biology, 31: 722-732 - Boudaoud S, Aouf C, Devillers H, Sicard D, Segond D (2021). Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation. Food Microbiology, 98: 103790 - Boudaoud S, Sicard D, Suc L, Conéjéro G, Segond D, Aouf C (2021). Ferulic acid content variation from wheat to bread. Food Science & Nutrition, https://onlinelibrary.wiley.com/doi/abs/10.1002/fsn3.2171 - De Guidi I, Farines V, Legras JL, Blondin B. (2021). Development of a new assay for measuring H2S production during alcoholic fermentation: application to the evaluation of the main factors impacting H2S production by three Saccharomyces cerevisiae wine strains. Fermentation, 7(4): 213 - Hapeta P, Szczepańska P, Neuvéglise C, Lazar Z (2021). A 37-amino acid loop in the Yarrowia lipolytica hexokinase impacts its activity and affinity and modulates gene expression. Scientific Reports, 11: 6412. DOI: 10.1038/s41598-021-85837-8 - Liu D, Legras J-L, Zhang P, Chen D, Howell K (2021). Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine. International Journal of Food Microbiology, 338: 108983 - Onno B, Roussel P, Michel E, Sicard D. (2021). Du Blé au Pain, impact des levains en panification biologique ; https://my.editions-ue.com/catalog/details//store/fr/book/978-620-2-55127-4/du-bl%C3%A9-au-pain,-impact-des-levains-en-panification-biologique - Petrizzelli MS, de Vienne D, Nidelet T, Noûs C, Dillmann C. (2021). Data integration uncovers the metabolic bases of phenotypic variation in yeast. PLoS Computational Biology, 17(7):e1009157 - Połomska X., Neuvéglise C., Zyzak J., Dudar K., Matyjasz J., Lazar Z., Casaregola S., Żarowska B. (2021). New cytoplasmic virus-like elements (VLEs) in the yeast Debaryomyces hansenii. Toxins 13:615. DOI: 10.3390/toxins13090615 - Tesnière C, Pradal M, Legras J-L (2021). Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species. FEMS Yeast Research, 21. DOI:10.1093/femsyr/foab020
2020
- Becerra-Rodríguez C, Marsit S, Galeote V (2020). Diversity of oligopeptide transport in yeast and its impact on adaptation to winemaking conditions. Front. Genet. 11 - Börlin M, Claisse O, Albertin W, Salin F, Legras J-L, Masneuf-Pomarede I (2020). Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity. Scientific Reports 10 (1), 1-14 - Börlin M, Miot-Sertier C, Vinsonneau E, Becquet S, Salin F, Bely M, Lucas P, Albertin W, Legras J-L, Masneuf-Pomarède I (2020). The “pied de cuve” as an alternative way to manage indigenous fermentation: impact on the fermentative process and Saccharomyces cerevisiae diversity. OENO one 54 (3), 435-442 - Borsenberger V, Croux C, Daboussi F, Neuvéglise C, Bordes F (2020). Developing methods to circumvent the conundrum of chromosomal rearrangements occurring in multiplex gene edition. ACS Synthetic Biology, 9(9):2562-2575. DOI: 10.1021/acssynbio.0c00325 - Canon F, Nidelet T, Guédon E, Thierry A, Gagnaire V (2020). Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. Front Microbiol, 11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500094/ - Carbonetto B, Nidelet T, Guezenec S, Perez M, Segond D, Sicard D (2020). Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough. Microorganisms 8, 240 - Coughlan AY, Lombardi L, Braun-Galleani S, Martos AA, Galeote V, Bigey F, Dequin S, Byrne K.P., Wolfe K.H. (2020). The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family. Eds : Moses AM, Wittkopp PJ & Rusche L. eLife, 9: e55336. Elife 9 - Desnos-Ollivier M, Letscher-Bru V, Neuvéglise C, Dromer F (2020). Yarrowia lipolytica causes sporadic cases and local outbreaks of infections and colonisation. Mycoses; DOI: 10.1111/myc.13095 - Duc C, Maçna F, Sanchez I, Galeote V, Delpech S, Silvano A, Mouret J-R (2020). Large-scale screening of thiol and fermentative aroma production during wine alcoholic fermentation: Exploring the effects of assimilable nitrogen and peptides. Fermentation, 6: 98 - Duc C, Pradal M, Sanchez I, Noble J, Blondin B, Tesnière C (2020). Specific gene regulations of non-usual micronutrient starvations leading to cell death during wine fermentation. OENO One 54, 359–371 - Eder M, Nidelet T, Sanchez I, Camarasa C, Legras J-L, Dequin S (2020). QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism. Sci Rep 10, 2162 - Gounot J-S, Neuvéglise C, Freel K.C., Devillers H, Piškur J, Friedrich A, Schacherer J (2020). High complexity and degree of genetic variation in Brettanomyces bruxellensis population. Genome Biol Evol.; DOI : 10.1093/gbe/evaa077 - Harlé O, Legrand J, Tesnière C, Pradal M, Mouret, J-R, Nidelet, T. (2020). Investigations of the mechanisms of interactions between four non-conventional species with Saccharomyces cerevisiae in oenological conditions. PLOS ONE 15, e0233285 - Marullo P, Claisse O, Raymond Eder, M.L., Börlin M, Feghali N, Bernard M, Legras J-L, Albertin W, Rosa A-L, Masneuf-Pomarede I (2020). SSU1 checkup, a rapid tool for detecting chromosomal rearrangements related to the SSU1 promoter in Saccharomyces cerevisiae. An ecological and technological study on wine yeast. Front. Microbiol. 11. - Morin N, Czerwiec Q, Nicaud J-M, Neuvéglise C, Rossignol T (2020). Transforming Candida hispaniensis, a promising oleaginous and flavogenic yeast. Yeast; DOI: 10.1002/yea.3466 - Roussel P, Onno B, Michel E, Sicard D (2020). La panification au levain naturel - Glossaire des savoirs - (EAN13 : 9782759231676). Editions Quae https://library.oapen.org/handle/20.500.12657/39944 - Sanya D, Onésime D, Kunze G, Neuvéglise C, Crutz-Le Coq A-M (2020) The native acyltransferase-coding genes DGA1 and DGA2 affect lipid accumulation in Blastobotrys raffinosifermentans differently when overexpressed. FEMS Yeast Research, 20(8):foaa060; DOI: 10.1093/femsyr/foaa060 - von Gastrow L, Madec M-N, Chuat V, Lubac S, Morinière C, Lé S, Santoni S, Sicard D, Valence F (2020). Microbial diversity associated with Gwell, a traditional french mesophilic fermented milk inoculated with a natural starter. Microorganisms, 8: 982
2019 :
- Albertin W, Masneuf-Pomarede I, Galeote V, Legras J-L (2019). New insights into wine yeast diversities. Yeast in the production of wine. Eds: Romano P., Ciani M. and Fleet G., Springer New York. - Blondin B., Duc C., Pradal M., Noble J., and Tesniere C. (2019). La mortalité des levures en fermentation alcoolique: Revue Française d’Oenologie 291, 21–23 - Carbonetto B, Ramsayer J, Nidelet T, Legrand J, Sicard D (2019). Bakery yeasts, a new model for studies in ecology and evolution. Yeast, 35: 591–603 - Duc C, Noble J, Tesnière C, Blondin B (2019). Occurrence of yeast cell death associated with micronutrient starvation during wine fermentation varies with nitrogen sources. OENO One 53. - Saubin M, Devillers H, Proust L, Brier C, Grondin C, Pradal M, Legras J-L, Neuvéglise C (2019). Investigation of genetic relationships between Hanseniaspora species found in grape musts revealed interspecific hybrids with dynamic genome structures. Front Microbiol 10, 2960 - Tesnière, C. (2019). Importance and role of lipids in wine yeast fermentation. Appl. Microbiol. Biotechnol. 103, 8293–8300 - Tesnière C, Bessière C, Pradal M, Sanchez I, Blondin B, Bigey F (2019). Relief from nitrogen starvation entails quick unexpected down-regulation of glycolytic/lipid metabolism genes in enological Saccharomyces cerevisiae. PLoS ONE 14, e0215870 - Thomas S, Sanya D, Fouchard F, Nguyen V, Kunze G, Neuvéglise C, Crutz-Le Coq A-M (2019). Blastobotrys adeninivorans and B. raffinosifermentans, two sibling yeast species which accumulate lipids at elevated temperatures and from diverse sugars. Biotechnology for Biofuels. 12:154. DOI: 10.1186/s13068-019-1492-x - Tra Bi C.Y., Amoikon T.L.S., Kouakou C.A., Noemie J., Lucas M., Grondin C., Legras J.-L., N’guessan F.K., Djeni T.N., Djè M.K., et al. (2019). Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from traditional alcoholic beverages of Côte d’Ivoire. Int. J. Food Microbiol. 297, 1–10 - Urien C., Legrand J., Montalent P., Casaregola S., Sicard D. (2019). Fungal species diversity in french bread sourdoughs made of organic wheat flour. Front. Microbiol. 10.
2018 :
- Brice, C., Cubillos, F. A., Dequin, S., Camarasa, C., Martínez (2018). Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. Plos One, 13 (2), 20 p. - Carbonetto, B., Ramsayer, J., Nidelet, T., Legrand, J., and Sicard, D. (2018). Bakery yeasts, a new model for studies in ecology and evolution. Yeast 35, 591–603. - Collot, D., Nidelet, T., Ramsayer, J., Martin, O. C., Meleard, S., Dillmann, C., Sicard, D., Legrand, J. (2018). Feedback between environment and traits under selection in a seasonal environment: consequences for experimental evolution. Proceedings of the Royal Society. B, Biological Sciences, 285 (1876), 9. - Deroite, A., Legras, JL., Rigou, P., Ortiz-Julien, A., Dequin, S. (2018). Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids, AMB Expr 8: 130. - Eder, M., Sanchez, I., Brice, C., Camarasa, C., Legras, J. L., Dequin, S. (2018). QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics, 19 (1), 19 p. - Englezos, V., Cocolin, Rantsiou, Ortiz-Julien, A., Bloem, A., Dequin, S., Camarasa, C. (2018). Specific phenotypic traits of Starmerella bacillaris related to nitrogen source consumption and central carbon metabolite production during wine fermentation. Applied and Environmental Microbiology, 84 (16). - Fievet, J., Nidelet, T., Dillmann, C., de Vienne, D. (2018). Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Frontiers in Genetics, 9, 26 p. - Galeote, V., Bigey, F., Devillers, H., Dequin, S., Wolfe, K., Neuvéglise, C. (2018). Genome sequence of Torulaspora microellipsoides CLIB 830T. Genome Announcements, 6 (26), DOI : 10.1128/genomeA.00615-18 - Legras, J. L., Galeote, V., Bigey, F., Camarasa, C., Marsit, S., Nidelet, T., Sanchez, I., Couloux, A., Guy, Franco-Duarte, R., Marcet-Houben, M., Gabaldon, T., Schuller, D., Sampaio, J. P., Dequin, S. (2018). Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Molecular Biology and Evolution, 35 (7), 1712-1727. - Lucas, P., Masneuf, I., Legras, J. L., Bely, M., Miot-Sertier, C., Claisse, O., El Khoury, M., Campbell-Sills, H., Börlin, M., Maupeu, J., Vallet-Courbin, A., Pladeau , V., Becquet , S., Chovelon, M., Bauduin, R., Cottereau, P., Coarer, M., Vinsonneau , E., Colosio , M.-C. (2018). Des outils pour fiabiliser les fermentations des vins et cidres biologiques en utilisant les levures et bactéries indigènes. Innovations Agronomiques, 63, 279-291. - Tesniere, C., Pradal, M., Bessiere, C., Sanchez, I., Blondin, B., Bigey, F. (2018). Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells. Molecular Biology of the Cell, 29 (4), 490-498.
2017 :
- Viel, A., Legras, J. L., Nadai, C., Carlot, M., Lombardi, A., Crespan, M. (Collaborateur), Migliaro, D., Giacomini, A., Corich, V. (2017). The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Frontiers in Microbiology, 8., DOI : 10.3389/fmicb.2017.01595 - Casalta, E., Vernhet, A., Sablayrolles, J.-M., Tesniere, C., Salmon, J.-M. (2017). Caractéristiques et rôle des particules solides au cours de la fermentation alcoolique. Revue des Oenologues et des Techniques Vitivinicoles et Oenologiques, 44 (162), 32-34. - Ferreira, D., Galeote, V., Sanchez, I., Legras, J. L., Julien Ortiz, A., Dequin, S. (2017). Yeast multi-stress resistance and lag phase characterization during wine fermentation. FEMS Yeast Research, 11 p. - Mendes, I., Sanchez, I., Franco-Duarte, R., Camarasa, C., Schuller, D., Dequin, S., Sousa, M. J. (2017). Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genomics, 18, 13 p., DOI : 10.1186/s12864-017-3816-1 - Di Gianvito, P., Tesniere, C., Suzzi, G., Blondin, B., Tofalo, R. (2017). FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Scientific Reports, 7, 12., DOI : 10.1038/s41598-017-09990-9 - Coi, A. L., Bigey, F., Mallet, S., Marsit, S., Zara, G., Gladieux, P., Galeote, V., Budroni, M., Dequin, S., Legras, J. L. (2017). Genomic signatures of adaptation to wine biological aging conditions in biofilm-forming flor yeasts. Molecular Ecology, 26 (7), 2150-2166. , DOI : 10.1111/mec.14053 - Stefanini, I., Albanese, Sordo, Legras, J. L., De Filippo, C., Cavalieri, Donati (2017). SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns. Scientific Reports, 7 (1), 10 p., DOI : 10.1038/s41598-017-15729-3 - Dequin, S., Escudier, J.-L., Bely, M., Noble, J., Albertin, W., Masneuf-Pomarède, I., Marullo, P., Salmon, J.-M., Sablayrolles, J.-M. (2017). How to adapt winemaking practices to modified grape composition under climate change conditions. OENO One, 51 (2), 205-214. , DOI : 10.20870/oeno-one.2016.0.0.1584 - Duc, C., Pradal, M., Sanchez, I., Noble, J., Tesniere, C., Blondin, B. (2017). A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. Plos One, 12 (9), 22 p., DOI : 10.1371/journal.pone.0184838 - Magalhães, F., Krogerus, Castillo, S., Ortiz-Julien, A., Dequin, S., Gibson (2017). Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking. FEMS Yeast Research., DOI : 10.1093/femsyr/fox049 - Rollero, S., Mouret, J.-R., Bloem, A., Sanchez, I., Ortiz-Julien, A., Sablayrolles, J.-M., Dequin, S., Camarasa, C. (2017). Quantitative 13 C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation. Microbial Biotechnology, 14 p., DOI : 10.1111/1751-7915.12749 - Dupont, J., Dequin, S., Giraud, T., Le Tacon, F., Marsit, S., Ropars, J., Richard, F., Selosse, M.-A. (2017). Fungi as a source of food. Microbiology Spectrum, 5 (3), 22 p., DOI : 10.1128/microbiolspec.FUNK-0030-2016 - Crepin, L., Truong, N. M., Bloem, A., Sanchez, I., Dequin, S., Camarasa, C. (2017). Management of multiple nitrogen sources during wine fermentation by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 85 (4), 21, DOI : 10.1128/aem.02617-16 - Sarilar, V., Sterck, L., Matsumoto, S., Jacques, N., Neuveglise, C., Tinsley, C. R., Sicard, D., Casaregola, S. (2017). Genome sequence of the type strain CLIB 1764 T (= CBS 14374 T ) of the yeast species Kazachstania saulgeensis isolated from French organic sourdough. Genomics Data, 13, 41-43, DOI : 10.1016/j.gdata.2017.07.003
2016 :
- Nidelet, T., Brial, P., Camarasa, C., Dequin, S. (2016). Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microbial Cell Factories, 15 (1), 13 p., DOI : 10.1186/s12934-016-0456-0 - Tapsoba, F., Savadogo, A., Legras, J. L., Zongo, C., Traore, A. S. (2016). Microbial diversity and biochemical characteristics of Borassus akeassii wine. Letters in Applied Microbiology, 63 (4), 297-306., DOI : 10.1111/lam.12619 - Casalta, E., Vernhet, A., Sablayrolles, J.-M., Tesniere, C., Salmon, J.-M. (2016). Review: Characterization and Role of Grape Solids during Alcoholic Fermentation under Enological Conditions. American Journal of Enology and Viticulture, 67 (1), 18 p., DOI : 10.5344/ajev.2015.15060 - Börlin, M., Venet, P., Claisse, O., Salin, F., Legras, J. L., Masneuf-Pomarede, I. (2016). Cellar-associated Saccharomyces cerevisiae population structure revealed high diversity and perennial persistence in Sauternes wine estates. Applied and Environmental Microbiology, 82 (10), 2909-2918., DOI : 10.1128/AEM.03627-15 - Legras, J. L., Moreno-Garcia, J., Zara, S., Zara, G., Garcia-Martinez, T., Mauricio, J. C., Mannazzu, I., Coi, A. L., Bou Zeidan, M., Dequin, S., Moreno, J., Budroni, M. (2016). Flor yeast: new perspectives beyond wine aging. Frontiers in Microbiology, 7, 11 p., DOI : 10.3389/fmicb.2016.00503 - Masneuf-Pomarede, I., Salin, F., Börlin, M., Coton, E., Coton, M., Jeune, C. L., Legras, J. L. (2016). Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Research, 16 (2), 12 p., DOI : 10.1093/femsyr/fow002 Jacques, N., Sarilar, V., Urien, C., Lopes, M. R., Morais, C. G., Uetanabaro, A. P. T., Tinsley, C., Rosa, C. A., Sicard, D., Casaregola, S. (2016). Three novel ascomycetous yeast species of the Kazachstania clade, Kazachstania saulgeensis sp. nov., Kazachstania serrabonitensis sp. nov. and Kazachstania australis sp. nov. Reassignment of Candida humilis to Kazachstania humilis f.a. comb. nov. and Candida pseudohumilis to Kazachstania pseudohumilis f.a. comb. nov. International Journal of Systematic and Evolutionary Microbiology, 66 (12), 5192-5200., DOI : 10.1099/ijsem.0.001495 - Michel, E., Monfort, C., Deffrasnes, M., Guezenec, S., Lhomme, E., Barret, M., Sicard, D., Dousset, X., Onno, B. (2016). Characterization of relative abundance of lactic acid bacteria species in french organic sourdough by cultural, qPCR and MiSeq high-throughput sequencing methods. International Journal of Food Microbiology, 239, 35-43., DOI : 10.1016/j.ijfoodmicro.2016.07.034 - Dulermo, R., Legras, J. L., Brunel, F., Devillers, H., Sarilar, V., Neuvéglise, C., Nguyen, H.-V. (2016). Truncation of Gal4p explains the inactivation of the GAL/MEL regulon in both Saccharomyces bayanus and some Saccharomyces cerevisiae wine strains. FEMS Yeast Research, 16 (6), 11 p., DOI : 10.1093/femsyr/fow070 - Bloem, A. (Auteur de correspondance), SANCHEZ, I., Dequin, S., Camarasa, C. (2016). Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 82 (1), 174-183., DOI : 10.1128/AEM.02429-15 - Lhomme, E., Urien, C., Legrand, J., Dousset, X., Onno, B., Sicard, D. (2016). Sourdough microbial community dynamics: an analysis during French organic bread-making processes. Food Microbiology, 53 (part A), 41-50., DOI : 10.1016/j.fm.2014.11.014 - Calam, E., González-Roca, E., Fernández, M. R., Dequin, S., Parés, X., Virgili, A., Biosca, J. A. (2016). Enantioselective synthesis of vicinal (R,R)-diols by Saccharomyces cerevisiae butanediol dehydrogenase. Applied and Environmental Microbiology, 82 (6), 1706-1721., DOI : 10.1128/AEM.03717-15 - Marsit, S., Sanchez, I., Galeote, V., Dequin, S. (2016). Horizontally acquired oligopeptide transporters favor adaptation of Saccharomyces cerevisiae wine yeast to enological environment. Environmental Microbiology, 18, 1148-1161., DOI : 10.1111/1462-2920.13117 - Legrand, J., Bolotin-Fukuhara, M., Bourgais, A., Fairhead, C., Sicard, D. (2016). Life-history strategies and carbon metabolism gene dosage in the Nakaseomyces yeasts. FEMS Yeast Research, 16, 14 p., DOI : 10.1093/femsyr/fov112 Vallverdu Queralt, A., Biler, M., Meudec, E., Le Guerneve, C., Vernhet, A., Mazauric, J. P., Legras, J. L., Loonis, M., Trouillas, P., Cheynier, V., Dangles, O. (2016). p-Hydroxyphenyl-pyranoanthocyanins: An Experimental and Theoretical Investigation of Their Acid-Base Properties and Molecular Interactions. International Journal of Molecular Sciences, 17 (11)., DOI : 10.3390/ijms17111842 - Coi, A. L. (Auteur de correspondance), Legras, J. L., Zara, G., Dequin, S., Budroni, M. (2016). A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts. FEMS Yeast Research, 16 (6), 9 p. , DOI : 10.1093/femsyr/fow066 - Rollero, S., Mouret, J.-R., Sanchez, I., Camarasa, C., Ortiz-Julien, A., Sablayrolles, J.-M., Dequin, S. (2016). Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain. Microbial Cell Factories, 15, 15 p. , DOI : 10.1186/s12934-016-0434-6
Evolutionary genetics and ecology of domesticated yeasts
Ce site utilise des cookies afin de vous proposer des vidéos, des boutons de partage, des remontées de contenus de plateformes sociales et des contenus animés et interactifs.
En savoir plus
A propos des cookies
Qu’est-ce qu’un « cookie » ?
Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.
Différents types de cookies sont déposés sur les sites :
Cookies strictement nécessaires au bon fonctionnement du site
Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques
Les différents types de cookies déposés sur ce site
Cookies strictement nécessaires au site pour fonctionner
Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.
Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.
Cookies techniques
Nom du cookie
Finalité
Durée de conservation
Cookies de sessions CAS et PHP
Identifiants de connexion, sécurisation de session
Session
Tarteaucitron
Sauvegarde vos choix en matière de consentement des cookies
12 mois
Cookies de mesure d’audience (AT Internet)
Nom du cookie
Finalité
Durée de conservation
atid
Tracer le parcours du visiteur afin d’établir les statistiques de visites.
13 mois
atuserid
Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site
13 mois
atidvisitor
Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.
13 mois
À propos de l’outil de mesure d’audience AT Internet :
L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.
L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.
À savoir :
Les données collectées ne sont pas recoupées avec d’autres traitements
Le cookie déposé sert uniquement à la production de statistiques anonymes
Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.
Cookies tiers destinés à améliorer l’interactivité du site
Ce site s’appuie sur certains services fournis par des tiers qui permettent :
de proposer des contenus interactifs ;
d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
de visionner directement sur notre site des vidéos et présentations animées ;
de protéger les entrées des formulaires contre les robots ;
de surveiller les performances du site.
Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.
Accepter ou refuser les cookies : comment faire ?
Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.
Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».
Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :
Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :
INRAE 24, chemin de Borde Rouge –Auzeville – CS52627 31326 Castanet Tolosan cedex - France